Coronae & Outflows from Helical Dynamos, Compatibility with the MRI, and Application to Protostellar Disks

نویسندگان

  • Eric G. Blackman
  • Jonathan C. Tan
چکیده

Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the MRI (magnetorotational instability) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protostellar Disk Dynamos and Hydromagnetic Outflows in Primordial Star Formation

Star formation occurs via accretion through a disk, which is likely to be turbulent, either because of gravitational or magnetorotational instability. Dynamo amplification of magnetic fields needs to be considered. As the disks are also stratified, the turbulence can be helical, with different signs of the helicity in each hemisphere. This provides a key ingredient for amplification of global s...

متن کامل

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

Non-steady Accretion in Protostars

Observations indicate that mass accretion rates onto low-mass protostars are generally lower than the rates of infall to their disks; this suggests that much of the protostellar mass must be accreted during rare, short outbursts of rapid accretion. We explore when protostellar disk accretion is likely to be highly variable. While constant α disks can in principle adjust their accretion rates to...

متن کامل

Magnetohydrodynamics of Protostellar Disks

The magnetohydrodynamical behavior (MHD) of accretion disks is reviewed. A detailed presentation of the fundamental MHD equations appropriate for protostellar disks is given. The combination of a weak (subthermal) magnetic field and Keplerian rotation is unstable to the magnetorotational instability (MRI), if the degree of ionization in the disk is sufficiently high. The MRI produces enhanced a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003